Thursday, April 2, 2020

Boost Up Your Learning With Rapid Typing Tutor Software

Boost Up Your Learning With Rapid Typing Tutor SoftwareRapid typing tutor software is widely considered to be an effective learning tool. It can prove to be very useful when you want to learn to type faster than ever before. You can then comfortably go ahead and try out your typing at the keyboard without having to worry about any sort of errors. With the right tutor software, you can even start typing your first letter right away without worrying about it going wrong.Such software comes with numerous options when it comes to designing it. You can be sure that you will not encounter any sort of problems when you have a tutor as you are provided with the best solution for learning right from the first day you start your free download. This will make it very easy for you to use the software effectively.There are lots of companies that offer you the best coach to use to make use of your computer with the coach software. You will be able to select the one that is the best fit for you. Wh en you want to be able to choose the best tutor for your software, you can find out from the company which is the best in this regard.You can buy the free tutor software at your own pace and determine how much time you need to be able to complete the entire course. You may find that you need the tutor software to take a test and have it to pass it as soon as possible. This is really important if you want to get the maximum benefit out of your learning experience. After all, you don't want to get disappointed in your typing skills just because the whole process was so slow to take place.When you buy your tutor software, you will get a variety of different drills that you can use in order to boost up your typing skills. In order to do so, you will get to get access to a lot of different types of drills. You can find out what you need the most by using different drills. This will help you boost up your typing faster.You should also look for the latest and greatest tutor software in ord er to get the most out of it. You can also always use the most recent versions of this particular product in order to be able to get the best possible results. All the latest in technologies are being used in order to provide you with a truly amazing typing experience.The tutor software for your needs will always help you to boost up your typing. You will be able to improve it fast and you will be able to fix any sort of typing errors. In order to ensure that you get the best in terms of results, you should make use of the latest version. This will ensure that you get the most out of your efforts.

Sunday, March 22, 2020

How is the SSAT Scored

How is the SSAT Scored The SSAT, or Secondary School Admission Test, is offered at three levels for students in grades 3-11. All three exams Elementary (3-4), Middle (5-7), and Upper (8-11) are held on eight standard Saturdays per year, as well as a number of flex dates. The test measures quantitative, reading, and verbal skills. It also emphasizes critical thinking and problem-solving above memorization. Score reports are distributed with an overall and per section scaled mark, norm groups (or percentiles), and a copy of your essay. What is a norm group? The SSAT is highly competitive, with norm groups composed of all individuals (divided by gender and grade) who are completing this exam for the first time in the past three years. This percentile ranking is thus a sign of how well you performed in comparison to others, rather than which percentage of your answers were correct. How is the SSAT a standardized test? Although each edition released on a specific date will be different, results are utilized interchangeably across North America and the world when considering student scores. Therefore, a scaled mark earned by a student in Alaska in January is comparable to a student of the same age receiving the same score in Florida in May. Results are interpreted in a standard method based on the same exam underpinnings. About scores and timing Scores are available roughly two weeks after the testing date, and they can also be accessed on the SSAT website under My Scores. Keep in mind that your raw results are simply those questions you answered correctly, minus a quarter of a point for each wrong response. Thus, if you do not know the answer and cannot make an educated guess, skip it! At nearly three hours in length, the SSAT is substantial. Practice each section in a timed environment to determine your strengths and weaknesses. Here are some great SSAT practice teststhat can help you prepare. You may also want to check out these SSAT flash cardsas well. The exam is partially about knowing yourself as a student and as a test-taker. Keep your timing in mind throughout your study process! A note about preparation for the SSAT The SSAT company does not release retired or previous tests to the public, so while they offer practice problems, and while we may possess a general idea of what material is on the test, no aid can perfectly predict what your score will be. It is also impossible to determine percentile rankings based on your raw results alone as they change according to the cohort with which you test. Aim to do your best, rather than focusing on the perfect score. This is a highly competitive test that is only one part of the application process. Here are some great tips on how to improve SSAT scores that may help you succeed.

Friday, March 6, 2020

Logic Pro Tutorial How To Create An Audio Slow-Down Effect

Logic Pro Tutorial How To Create An Audio Slow-Down Effect Suzy S. Want to add a cool slow-down effect to your music? Learn how in this Logic Pro tutorial from Brevard, NC teacher John C If youve listened to popular radio in the past several years, and I’m guessing you have, youve heard either a vocal melody line or an instrumental part of a song make a particular effect. Listen to the following Fall Out Boy song and pay attention to the music in the background at 00:27 seconds, again at 1:27, and once again at 2:27: Did you hear it? Thats the effect I will be teaching you how to do in this article. How to Get the Effect Before we jump in, let’s get a couple things out of the way. First, I want you to understand that this is not the only way you can go about making this effect happen, but Apple has made it easy for us Logic Pro users.  This effect we are trying to accomplish is a type of “fade” in Logic, and there are two different areas in Logic where you can accomplish it.  One way is with Automation. To get to the automation area in Logic Pro 9 or X, simply hit the letter A on your keyboard and the editing area will change to look something like this: Automation allows you to draw lines and basically tell the computer when, how fast, and from and to which points to turn a particular knob. That knob could be something as simple as the volume knob on a particular track or something more advanced like the frequency knob of the single band EQ plugin on the track pictured above. But I’m going to stop there because we are NOT going to use automation to do this effect! Thank goodness, right? Instead, Logic has something called the Region Inspector. So what on earth is a region? Well, it’s quite simple, really. These little boxes all over the place in the picture below… those are regions. When you select one or more of these regions, the Region Inspector shows the settings applied to those regions. The Region Inspector is on the left side of the screen and looks like this: IMPORTANT NOTE There is a distinct difference between some of the regions shown above. The ones with the dashed lines are MIDI regions. The others are audio regions. These are the only types of regions. The effect we are trying to accomplish in this article does NOT work on MIDI regions. Final Steps Select one of the audio (not MIDI) regions in your project. Then, in the Region Inspector, expand the “More” section and click on “Fade Out” and change it to “Slow Down”. Double click the zero and type 250 into the field next to “Slow Down” and press Return. Congratulations, you did it! Now listen to your audio and you’ll hear that audio slow-down effect. Bonus Now adjust the “Curve” by dragging up and down on the number next to the word “Curve” (below the “Slow Down” area in the Region Inspector) and notice how the curve of the slow-down effect area changes. Listen to the difference, and then try different combinations of the amount of the slow-down fade and the curve. Have fun! Oh, and what do you think might happen if you click on the word “Fade In” in the Region Inspector? What’s that you say, a “Speed-Up” effect? Oh yea! You’ve just learned a pro producers trick. Now… use it with caution. John C. teaches Logic Pro Software in Brevard, NC.  He earned his degree in Songwriting from Berklee College Of Music and is also an Apple Certified Master Pro in Logic Pro 9. Learn more about John here! Interested in Private Lessons? Search thousands of teachers for local and live, online lessons. Sign up for convenient, affordable private lessons today! Search for Your Teacher Photo by Miguel Mendez

Thursday, March 5, 2020

No Self-Promotion - 6 Things to Do Instead - Introvert Whisperer

Introvert Whisperer / No Self-Promotion - 6 Things to Do Instead - Introvert Whisperer No Self-Promotion 6 Things to Do Instead Let me emphasize that Self-Promotion doesn’t have to be obnoxious to be effective.  But, if you don’t Self-Promote you, who will? If you ever want to get ahead, you have to learn how to Self-Promote. I want to help you accelerate your career by connecting you with your Free Instant Access to my video that shows you simple, yet effective ways to Self-Promote. Start watching now by clicking here! Brought to you by Dorothy Tannahill-Moran â€" dedicated to unleashing your professional potential. Introvert Whisperer

Online Arctan 1 Tutors - Arctan 1 Online Tutoring

Online Arctan 1 Tutors - Arctan 1 Online Tutoring In trigonometry, tan is a trigonometric function where stands for the angle. The tangent of an angle , tan is the opposite side divided by the adjacent side in a triangle. Arctan is the inverse of tangent and by taking the inverse tangent, we find the value of . Arctan(1) is the inverse tangent of 1 and the angle value of it is 45. Example 1: Find the angle, x if in a triangle the opposite side to angle x is 20m and the adjacent side is also 20m. Given in a triangle, the opposite side = 20m The adjacent side = 20m The tangent of an angle, tanx = opposite side/adjacent side tanx = 20/20 hence tanx = 1 Now in order to find the value of the angle, x we have to get the tan to the right side, and it becomes arctan or inverse tangent. Now we get: x = arctan(1) = 45 Hence in the triangle, the angle, x = 45 Example 2: Find the angle, if in a triangle the opposite side to angle is 60cm and the adjacent side is also 60cm. Given in a triangle, the opposite side = 60cm The adjacent side = 60cm The tangent of an angle, tan = opposite side/adjacent side tan = 60/60 hence tan = 1 Now in order to find the value of the angle, we can take the tan to the other side, and it becomes arctan or inverse tangent. Now we get: = arctan(1) = 45 Hence in the triangle, the angle, = 45

Basic Geometry Equations and Examples

Basic Geometry Equations and Examples Mastering Basic Equations of Geometry ChaptersThe Basic ShapesCalculating TrianglesCalculating QuadrilateralsCalculating PolygonsCalculating CirclesSome people might say that geometry is in no way a ‘sexy’ subject; really, as a general rule, calculating angles, volumes and areas is seldom considered enticing or fun.Could the opposite be true?Over the last 10 years, we’ve seen mathematics creeping into films and television shows; The Big Bang Theory is a prime example of such. Granted, equations are not central to the plot and, quite frankly, only the first few shows were math-heavy. After that, algebraic work popped up only occasionally.Still, it is nice to see complex calculations playing out in a popular arena, and it’s even better that both male and female characters take part in tweaking the equations; a  mere 20 years ago, cinematic mathematicians could only be male!Now it’s your turn to master basic geometry equations and you want the most efficient way of doing so. Or maybe you’re a fan of Descartes an d wish to take Cartesian geometry to the next level but you need a solid foundation, first.Your Superprof wants to help you get a good grasp of fundamental geometrical formulas; grab your squares and compasses… we’re off! MyriamMaths Teacher 5.00 (13) £20/h1st lesson free!Discover all our tutors MarkMaths Teacher 5.00 (5) £200/h1st lesson free!Discover all our tutors Dr parikhMaths Teacher 5.00 (8) £40/h1st lesson free!Discover all our tutors KamalMaths Teacher 5.00 (9) £30/h1st lesson free!Discover all our tutors PetarMaths Teacher 5.00 (8) £40/h1st lesson free!Discover all our tutors GowsikaMaths Teacher 5.00 (5) £15/h1st lesson free!Discover all our tutors RubenMaths Teacher 5.00 (1) £15/h1st lesson free!Discover all our tutors ConorMaths Teacher 4.75 (4) £30/h1st lesson free!Discover all our tutorsThe Basic Shapes How many geometric figures can you find in this pattern? Image by monicore from PixabayYou might be tempted to think ‘circle’, ‘triangle’ or ‘square’ and you’d be absolutely correct.Each of those geometric shapes fall into one of these four general categories:Triangles have three sides; the sides may be of equal length (equilateral triangle) or all different length (scalene triangle).A quadrilateral is any four-sided polygon. Those would be rectangles, squares, rhombuses, diamonds…the parallelogram, a shape that has 2 pairs of equal sides, is also a quadrilateralPolygons: literally ‘many sides’. These shapes can be triangles, hexagons, pentagons… all of those ‘gons’ are polygons. Essentially, anything that has straight sides is called a polygon.Circles are a class onto themselves because they have no straight linesTheir unique characteristics include:Squares have four equal sides and four right anglesRectangles have two pairs of equal sidesA trapezoid has on ly one pair of parallel sidesA trapezium has no sides of equal lengthRhomboids: opposite sides and opposing angles are equalThe isosceles triangle has two equal sidesRight triangles have one 90-degree angle opposite of the hypotenuseEach of these shapes has its own formula to calculate its perimeter, area and angles. Some you may be familiar with, such as the Pythagorean theorem while others are perhaps a bit less memorable.Let’s take a look at them now.Do you need help with your geometry studies? Perhaps you could find a geometry tutor…Calculating TrianglesStarting with the shapes of the fewest sides (but sometimes the most complicated formulas), we tackle geometric formulas head-on!The simplest formula for the perimeter of any triangle is a+b+c, with each letter representing a side. It is beautiful in its simplicity and easy to work with, provided you know each side's length.Let’s say your triangle has these measurements: a = 3 inches, b = 4 inches and c = 5 inchesIts perime ter would then be 3+4+5=12 inches.Clearly, this is a triangle is neither equilateral nor isosceles; nor is it a right triangle. How would we calculate the perimeter if only two values, the bottom and one side, are given?In such a case, we have to draw on Pythagoras’ theorem: a2+b2=c2. You remember that one, right?First, draw a line from the triangle’s peak straight down to its base. This line, h, should be perpendicular to the base, thereby forming two 90-degree angles â€" one on each side of the line.You now have two right triangles, one of which has a measurement for both a and b. From there, it is a simple matter to plug known values into the theorem (don’t forget to square them!) and find your missing value.Let’s try it with a fictitious triangle:a = unknown b = 5 c = 7a2 * 52 = 72a2 * 25 = 49 the unknown value must stand alone on one side of the equationa2 = 49 â€" 25 move 25 to the other side of the equal sign, subtracting it from the given value of ca2 = 24Now you hav e to calculate the square root of 24 to find the value of 'a', which is 4.898. Once you've calculated the perimeter of one right triangle, you must calculate the second to get the dimensions of the original triangle.Congratulations! You now know how to calculate the perimeter of any triangle! This and similar triangles signs are used to urge caution on roadways Image by Gerd Altmann from PixabayCalculating Triangles’ AreaWhile perimeter calculation is a rather simple endeavour, figuring the area of a triangle is a bit more involved.If values are given for all three sides, you may apply Heron’s Formula:area = square root of [s(s-a)(s-b)(s-c)], with 's' being the semi-perimeter, that is (a+b+c)/2It only looks complicated; remember that, when working with a formula, you only need to plug in known values to solve for the unknown. When thought of in that way, the Hero’s Formula, as it is also called, is pretty easy!Now, for ‘area of triangles’ equations where one or more values are unknown.If you know only the value of the triangle’s base and its height, you may apply: area = ( ½) * b * hIf only the length of two sides and the degree of the angle joining them are known, you would use trigonometry to find the missing values. The basic formula is:Area = ( ½) * a * b * sin C Keep in mind that lowercase letters signify line measurements while uppercase letters represent angles.If you only know the values of sides a and c, you would plug them in and calculate sin B. Likewise, if you know b and c, you would employ sin A to get your triangle’s area.Why not practise those for a while before moving on... A=a2 and for rectangles, it is A=l * w. Simple, right?Things start getting complicated when we get into parallelograms and trapezoids; to solve both of those equations, you will need to know the height of the shape (h) an d the length of the base (b) â€" the line at the bottom.Once you know those values, choose the appropriate formula for the shape:b * h = area of parallelograms ( ½)(a+b) * h = area of trapezoids, where  â€˜a’ represents the side opposite of ‘b’.Quadrilaterals may just be the easiest shapes to work with. If you need extra practice, there are plenty of resources online where you can find geometry worksheets and equations to sol ve.Calculating PolygonsWhether you are confronted with an apeirogon (a polygon with an infinite number of sides) or the more familiar hexagon, you need to know how to calculate its perimeter and area.Luckily, apeirogons are only hypothetical; imagine having such a figure to calculate an area for!If your polygon’s sides are all the same length, you can apply P=n * v, where ‘n’ is the number of sides and ‘v’ is the value of each side.If said polygon’s side are not all the same length, you will have to add up those values to get its perimeter. The stop sign is perhaps the most renown regular polygon Image by Walter Knerr from PixabayCalculating Areas of PolygonsThere are several ways to realise the value of any polygon’s area, some of which involve calculations for triangles.First, we tackle the equations for a regular polygon; one whose sides are all the same length. Before we can start any ciphering, we have to determine the polygon’s radius.That involves drawing a circle inside the polygon in such a manner that the circle’s perimeter touches the polygon’s perimeter. This is called an inscribed circle. Once we know that radius’ value, we can apply this formula:A = ½ * p * rFormulae get more complicated the more sides the polygon has.Let’s say the number of sides is represented by ‘n’ and sides by ‘s’. The radius, also called apothem, is designated ‘a’. Of course, ‘A’ represents ‘area’, yielding a formula that looks so:A = ns/4 v 4-s2From here, the formulas get ever more complex. Do they l eave  you struggling with the basics of geometry? You can refer to our complete guide!Calculating CirclesCircles involve neither angles nor lines and their perimeters are called ‘circumference’. However, their calculations do require at least a line segment which is instrumental to any formula for circles.Oddly enough, it seems that the formula for calculating areas of circles is more renown than perhaps for any other geometric shape: pr2, or pi * r2Surely you know/remember that pi (p) has a value of 3.1415...The less-renown formula concerning circles, the one for calculating circumferences is: 2 * p * rBear in mind that these are formulae for calculating the area and perimeter of two-dimensional shapes; once they gain an additional dimension â€" they become 3-D shapes and merit a calculation of volume as well as area and perimeter.Let’s not go off on a tangent, here; we’re quite happy to provide formulas for these basic geometric constructions...But you don’t have to stop here; latch on to our beginner’s guide to geometry!

100 Lesson Plans And Ideas For Teaching Math

100 Lesson Plans And Ideas For Teaching Math Teaching Math is a great process, since it is oriented towards applications and practical thinking. The versatility of a teacher with innumerable innovative ideas on hand paves way for success in teaching Math. Or else, the classes become boring and the teacher could not get across his or her ideas successfully. Why there is a need for 100 Math plans and ideas? It is the basic grasping capability of the targeted students that a teacher needs to keep in mind while preparing for a Math class. When one set of ideas suits the needs of a particular set of students, it could be something else that would appeal to yet another group. So, keeping different ideas in store is always good for a Math teacher, not to run short of the stock in the middle of the class. Hence,there is a necessity for lots of lesson plans and ideas to be stored by a teacher for Math. Here are 100 Math plans and ideas for the benefit of Math teachers. Number System in math Numbers that are not rational are called irrational numbers and students understand that every number has a decimal expansion. Teachers could show how decimal expansion repeats itself with examples. They could make students convert a repeating decimal expansion into a rational number with black board examples. Sounds of PI (Numberphile’s resources) could be an activity to explain the concept. Function Function is a rule and it assigns exactly one output to each input. The graph of the Function is the set off ordered pairs having one input with the corresponding output. Function can be compared to a machine to explain the concept of input and output and the relationship between input and output could be explained in simple tabular columns. An online math tutor could find easy examples for Function like Trigonometry Function to make the students understand the concept easily. 21 Century Lessons: A Boston Teachers Union Initiative offers hand outs and presentations for this lesson. Radicals and Integer Exponents in math Students know and apply the properties of integer exponents for generating equivalent numerical expressions. An activity like gallery walk could motivate students to observe patterns in algebraic expressions. They could use their observations in classroom work like applying the properties of integer exponents for simplifying expressions. Integer Exponents and Scientific Notation Lesson plans by My Favorite Resources offer help from explaining the concept. Ratios and Proportional relationships Students understand ratio concepts and use ratio language to describe a ratio relationship between two ratio quantities. Teachers could advise students to use reasoning about division and multiplication for solving ratio and rating problems about quantities. Students extend the columns of multiplication tables and analyze simple drawings which indicate the relative size of quantities. By doing so, they expand their ideas of multiplication and division and connect them to ratios and rates. 21 Century Lessons: A Boston Teachers Union Initiative offers lesson plans for this concept. Operations and Algebraic Thinking Students learn to use parenthesis and brackets in numerical expressions and they evaluate expressions with these symbols. Teachers could assign word problems to students and ask them to write a numerical with a variable for each word problem. The students need to explain the numerical expressions correctly using the rule for order of operations. Building better classrooms: Cleveland Teachers Union provides support for teaching this concept. Arithmetic with Polynomials and Rational Expressions Students understand that polynomials form a system which is analogous to the integers. They learn to add, subtract and multiply polynomials. Teachers could bring an analogy between multiplying and dividing polynomial rational expressions and multiplying and dividing Fractions. Both can be reduced and thus students are able to understand the concept in a natural way. Algebra2go provides resources for this lesson. Seeing structure in Expressions Students learn to interpret parts of an expression like terms and factors. They also learn to interpret complicated expressions. Asking students questions regarding structure in expressions, collecting answers, drawing conclusions and then coming about the real concept could be an excellent warm up with insights about the topic from the students’ side. Creating equations Students learn to create equations and inequalities in one variable and use these equations and inequalities to solve problems. Students could start with translating open sentences into algebraic equations and get ahead with solving problems. Sentences and expressions could be given in tabular columns for matching, asking students to select the right expressions for the sentences. YourMathGal videos are useful resource for this lesson. Reasoning with Equations and inequalities Students understand solving equation as the process of reasoning. They try to explain the reasoning behind solving the equation. Suggesting viable arguments for justifying solution methods could make teacher’s task easy in explaining the concept. Algebra2go provides lessons for this concept. NBT Number and operation in base 10 Students understand the place value system. They understand that in a multi digit number, a digit in one place denotes 10 times. Teachers could use Place Value Table with columns up to ten thousand for teaching this concept. Share my Lesson Math Team provides resource for this concept. Quantities Students reason quantitatively and use units to understand problems. Students could visit medical shops and understand how people use Math quantities for preparing medicine. stembite gives out resources for explaining this lesson. Building Functions Students learn to build a Function which models a relationship between two quantities. By building a toy staircase with blocks, teachers could easily explain building Functions. stembite provides plans for this lesson. Counting and cardinality Students know number names and count to 100 by tens and ones. Nursery rhymes and songs are the best resource for making students learns counting with ease. tmaerz provides resources for this lesson Linear, quadratic and exponential models Students learn to construct linear, quadratic and exponential models and know how to compare them. Students could use manipulative like straw and matchsticks to create geometric patterns. They will form linear, quadratic and exponential models based on the properties (like perimeter, area etc) of the geometric patterns created with the manipulative. Again, stembite is a good resource for explaining this lesson. Interpreting Functions Students understand the concept of a Function and they learn to use a Function notation. They understand that a function from one set (domain) to another set (range) assigns each element of the domain one element of the range. Graphing and evaluating piecewise function with the use of calculator could help students pick up the concept with ease. Samwelli’s resources are useful in this context. Reason with Shapes and their Attributes Students learn to distinguish between defining attributes (like triangles with three sides) and non defining attributes (like overall size, color). Teachers could use shape sheets and BLM to explain triangles. Students could circle the triangles in the sheet and understand their attributes. jvargo08 offers resources for this lesson. Reason with Shapes and Attributes Students understand that shapes in different categories share attributes and attributes that are shared define a larger category (like quadrilateral being a category defined with the shared attribute of four sides of a rectangle or rhombus). Students recognize rhombus, squares and rectangles as examples of quadrilateral from the figures presented and understand how they share the attributes. Share My Lesson Math Team provides plans for this lesson. Drawing and identifying lines and angles Students learn to draw lines, rays, line segments, angles and parallel and perpendicular lines. Pattern blocks can be used by students for identifying the above mentioned geometric shapes. They could create webs from yarn and notice all the geometric shapes in those webs. Building Better Classrooms: Cleveland Teachers Union resources are useful for this lesson. Graph Points on the coordinate Plane to solve math problems Students learn to use graph points on the coordinate plane to solve mathematical and real-world problems. Coordinate Grid Geoboards and Coordinate Grid Swap etc could be used to explain this lesson. nrich maths offers resource for this lesson. Classifying two dimensional figures into categories Students learn to classify two dimensional figures into categories on the basis of their properties (like all rectangles have 4 right angles and squares being rectangles have four right angles). Drawing two different quadrilaterals and explaining their similarities and differences could be a possible activity for students to understand the concept. nrich maths gives activity for this concept Drawing, constructing and describing math geometrical figures Students solve problems through scale drawings of geometric figures. They learn to compute lengths and areas from scale drawings. A visit to a zoo for viewing all animal enclosures could be an interesting activity which could be turned to scale drawing measurements of the zoo as a classroom activity afterwards. youngrunner30 provides activity for this lesson. Solving math and real life problems using area, surface area, angle measure and volume Students learn the formula for circumference and area of a circle and use them for solving problems. Students use hoops of different sizes to understand geometry concepts like area and circumference and gradually learn to solve problems. dsuh 2 has lesson plan for this lesson. Understanding congruence and similarity Students understand congruence and similarity using transparencies, physical models or geometry software. Illustrated multiple choice questions with answers could help teachers refresh the previous session and get students into the present one without difficulty. Students experimentally verify the properties of reflections, rotations and translations in this chapter. My Favorite Resources provides lesson plan for this concept. Pythagorean Theorem in math Students understand and apply Pythagorean Theorem. Students learn to explain a proof of the Pythagorean Theorem and its converse. Interactive proofs and animated proofs of Pythagorean Theorem could be used for explaining this lesson. American Federation of Teachers provides resource for this lesson. Problems involving volume of cylinders, spheres and cones Students understand the formula for the volumes of cylinders, spheres and cones and use them to solve real life and mathematical problems. Clay modeling could be the starting activity for students and they would make sphere, cone and cylinder in different sizes out of clay and find out their measurements. YourMathGal offers video lesson for this lesson. Congruence Students experiment with transformations in the plane. They learn precise definitions of circle, angle, parallel line, and perpendicular line. As a start up exercise, teachers could show examples of the figures that are congruent on the black board. They also could ask students to find out examples in the classroom like books, name tags, rulers which are matching. Circles Students understand and apply theorems about circles. They prove that all circles are similar. An amusement park visit would be an entertaining activity helping students understand the theorems of circle. Samwelli provides resource for this lesson. Similarity, right triangles and trigonometry Students prove theorems involving similarity. They prove Pythagorean Theorem using triangle similarity. Using diagrams on black board and asking questions regarding that, teachers could explain how to prove Pythagorean Theorem using triangle similarity. AFTNJ provides lesson plan for this. Laws of sines and cosines in math Students prove the laws of sines and cosines and do problems involving them. Activity sheets can be used to explain laws of sines and cosines. Geometric Measurement and Dimension Students understand volume formula for cylinder, cone and pyramid and the circumference and area of a circle. stembite offers presentations for informal arguments about the volume formula for this lesson. In his presentation, simply by watching the sunset, Andrew Vanden Heuvel tries to measure the diameter of the earth. Modeling with geometry Students apply geometric concepts in modeling situation. Students use geometric shapes, measures and properties to describe objects. For example, students model the trunk of a tree or the torso of a human body as a cylinder. AFTNJ provides activity for this lesson. Understanding concepts of angle and measuring angle Students understand that angles are geometric shapes which are formed wherever two rays share a common endpoint. Teachers could use work sheets for students to work out the missing angles. Or they could ask students to measure angles around the classroom and record their kinds. family math night provides resource for this lesson. Describing several measurable attributes of a single object Students classify objects into categories that are given. They count the number of objects in each category and they sort the category by count. Using cubes and interactive games online could be the possible activities that kindle interest in students to learn classification of objects. tmaerz provides lesson tools for this concept. Telling and writing time in math Students tell time in hours using digital and analog clocks. Using activity cards to match analog and digital time would be a suitable activity to help students tell and write time. As a motivational activity, teacher could put up posters regarding days and months and pictures displaying clocks in the class room. Students also could write time from sets of clock cards with hour, half hour and quarter hour. PatriciaMP provides learning tools for this lesson. Understanding concepts of area Students understand that area is an attribute of plane figures and they understand concepts of measuring area. Song for area could be adopted by teachers to make the concept easily understood by students. Fun activity like designing dream house and swimming pool would do great job for this lesson. Students would design their dream house using graph paper and find out the area of each room in the dream house. My Favorite Resources offers lesson plan for this concept. Understanding of statistical variability Students understand that a statistical question is one that anticipates variability in the data related to the question and it accounts for it in answers. Sample questions could be asked by teachers to make this concept clear in student minds. For example, teachers could ask questions like ‘how old are students in the class’ anticipating statistical variability in answers from students. My Favorite Resources provides lesson plan for this lesson. Summarizing and describing math distributions Students learn to display numerical data in plots on a number line. Questions like ‘how a dot plot is similar to a histogram ’and‘how can data be misleading (intentionally, unintentionally)’ could be posed to trigger the thinking of students. It brings about great learning outcomes. My Favorite Resources provides lesson plan for this concept. Using random sampling for drawing inferences about population Students understand that Statistics is useful for providing information about population through examining a sample of population. Examples like prediction of the winner of an election in a school through survey data (which are randomly sampled) could make the concept clear in student minds. stembite provides presentations for this topic. Investigating patterns of association in bivariate data Students investigate patterns of association in bivariate data by constructing and interpreting scatter plots. Linear models of bivariate data would be helpful in explaining the concept for teachers. My Favorite Resources provides lesson plan for this topic. Math Numbers and operations Students learn to add, subtract, multiply and divide rational numbers. Discovery Education provides video for this topic. Further, interactive games like 7th Grade Numbers and Operations Jeopardy could be played by students for understanding the lesson. The game has three categories-comparing rational numbers, adding and subtracting rational numbers and multiplying and dividing rational numbers. It can be played on computers and tablets. Math Numbers and operations Students learn to solve word problems involving time and money. Teachers could use set of differentiated worksheets to teach students to solve word problems involving time and money. Teachers could start the class with practical questions involving time and money ( like ‘how long it would take to practice a musical instrument’ and ‘what amount a student needs to save for a gift’ ) Discovery Education provides lesson plan for this topic. Measuring and estimating lengths Students learn to measure and estimate lengths. They understand the difference between measuring and estimating lengths. Students could start with measuring each other’s arms and legs. They could be given one more task of measuring the objects around the classroom. Discovery Education offers lesson plan for this concept. Measuring lengths and heights Students understand the importance of accurate measurement through discussion and try to measure and compare distances. Worksheets and presentations are awesome in use for this lesson. Discovery Education gives out lesson plan for this topic. Creating three dimensional figures Students create three dimensional figures and find surface area for three dimensional figures. Students could use nets to create three dimensional figures made of triangles and rectangles and find out their surface areas. Discovery Education provides video for this topic. Data Analysis and Probability Students learn the definition of probability and solve problems based on probability. Crazy Choices worksheet and Crazy Choices game are useful for explaining the concept of Probability. Discovery Education provides lesson plan for this topic. Rational Numbers concepts Students understand Egyptian achievements in Math. They learn to multiply and divide numbers with Egyptian methods of addition and doubling. Constructing a personal fractional strip kit would help every student in understanding rational numbers with ease. Students should place strips in the order of increasing size and get to know about rational numbers. Discovery Education provides video for this lesson. Numbers in Nature Students understand what Fibonacci sequence is and how it is expressed in nature. Card sort is a good activity for this lesson. Students group cards into number sequences like square numbers, cube numbers, triangle numbers ,Fibonacci numbers, even and odd numbers. Examples from natural objects like fruits and vegetables can be given for Fibonacci sequence and students could be asked to work on the classroom activity sheets with answering the questions over there. Discovery Education offers activity sheets to explain this concept. Introduction to Ratios Students would start with simplifying fractions and go ahead with representing real world situations. Worksheets for simplifying fractions would work wonders for a teacher as it prepares a good ground for students for the next level of learning. 21st Century Lessons: A Boston Teachers Union Initiative provides resource for this. Squaring function Students are introduced to the squaring function on a calculator. Graphing calculators are useful fort teaching squaring function. Math Team provides handout for this topic. Solving Linear math Equations Combining Like terms Students learn to solve linear equations in one variable. Treasure hunt activity and card sort activity are useful for this lesson. YourMathGal videos are useful resource for this concept. Combining Like terms Students learn how expressions that look different are equivalent. Like term Card games has been a popular idea for teaching this concept. Combining like terms cards are also available for the classroom use of students.21STCentury Lessons:  A Boston Teachers Union Initiative provides resource for this lesson. Complex nos 7 Students are shown how to simplify powers of i. Multiple choice questions and interactive quizzes help teachers greatly in reviewing students’ understanding of the topic. YourMathGal presents video for this concept Factorization and expanding Double Bracket Box set Students learn expanding Double Bracket with or without coefficient. Questioning and examples are the methods for introducing the topic to the students. Math Team provides tutorial on this topic. The slope of a line Students identify the slope of a line and graph aline with a given slope. Graphical representations on the black board make the task of the teacher easy in teaching the slope of a line in the classroom.21STCentury Lessons: A Boston Teachers Union Initiative offers resource for this topic. Translating math Expressions Memory/ Matching Translating Expressions Memory/ matching could be taught as a group activity in the class. Students match the verbal phrase and algebraic expression by working with a partner. They can play like face down for memory and face up for matching Strickland provides resource like game /puzzle for this concept. Equivalent expressions Students get familiarized with the fact that two expressions are equivalent by using reasoning skills and testing a number to prove their theory. Diagrams can be used to help students understand the concept. Practice worksheets are useful for teachers to help students with clear ideas in the topic. 21ST Century Lessons:  A Boston Teachers Union Initiative provides resource for this lesson. Ratios and Proportional relationships Students learn to perform operations with fractions, ratios and decimals. Teachers could use Number CSI-Solve the “Crime “activity at the end of the class. They need to pick up five evidences for eliminating nine suspects out of ten. Math Team provides resource for this activity. Graphing lines Students learn how to find the x and y intercepts of a line and how to plot those points to graph the line. Overhead transparencies like Harry Potter line graph would help teachers in this lesson. YourMathGal offers video for this lesson. Solving systems of math Equations Treasure Hunt Students identify the coordinates of intersection. They solve systems of equations. Treasure hunt activity around the classroom helps students understand the concept in solving systems of equations. Math Team provides activity for this topic. Forming math Equations cross number To teach forming equations cross number, teachers could use cross number grids .Students fill in the cross number grid with numbers and write clues in the form of equations and they solve the equations. Math Team provides game/puzzle for this topic. Algebraic code breaker activity Students use their algebraic knowledge to crack a code in this activity. The teacher puts the code up on the board and then hands over envelopes of equations in groups to the groups of students. Students work on and use their algebraic knowledge to find out the code. Math Team provides activity for this lesson. Algebra starter Students review solution of simple linear equations in one variable in this activity. It is a 5-10 minutes starter. Students need to solve 7 equations to find the solution to a riddle. The slide of the riddle is put on the board. Math Team provides activity for this lesson. Real-life Straight Line Graphs Students match a description of something in the real life with a straight line graph in this activity. Students could match up the right equation for the line. Math Team provides activity for this topic. Solving math equations booklets Students solve equations by using the ideas of balancing and inverse operations. They use hand outs and booklets for this. Math Team provides hand out for this topic. Solving math equations code breaker activity It involves multiplying brackets and rearranging or balancing to find a secret code word. It could be used as a wrap up or starting activity. Math Team provides activity for this concept. Solving math equations with Algebra tiles Unit Students use Algebra tile manipulative to solve equations. It is in 5 lessons which take students gradually to symbolic Algebra from number tricks. KevinAHall provides resource for this topic. Math Equations Students solve equations. Consolidation exercises help students understand solving equations like equations with brackets. Math Team provides hand out for this topic. Introduction to Algebra Students understand that letters in equation are simply unknown numbers. Simple black board examples could help teachers explain their introduction to Algebra (like x-2 is 6; so x is 8) in an easy manner. Math Team provides hand out for this topic. Algebra: Expressions, Equations, substitution Students understand what is Algebra, Modeling Expressions and Equations, Substitutions. Substitution grids, Algebraic expressions by mr-mathematics-com are some sources for teaching this lesson. dawnlee 2582 provides presentations for this topic. Math Substitution codes This lesson tests students’ knowledge of algebraic expressions, substitution and negative numbers. It is presented in slides to help students’ easy understanding. MrBartonMaths provides resource for this topic. The great Algebra race It is a dice game to test students’ ability to substitute and to investigate expressions. It helps students consolidate their understanding of substitution. MrBartonMaths provides game/puzzle for this topic. Math formulas Students follow review guide for multiple grades and topics. It strengthens their problem solving skills and basic ideas in formulas. Math Team provides a hand out for this in the form of a booklet. By following the same, students have good review material for formulas. Straight line graphs “millionaire” Students select correct statement or statements based on pair of graphs each time. KS4 worksheets play a good role in making students understand this lesson. Math Team provides a game/puzzle for this concept. Function Tables and Plotting straight line graphs Students answer questions based on plotting straight line graphs. Math Team provides a hand out for this topic. It  helps students consolidate their ideas through answering questions in the handout and could work in groups with it during classroom teaching. The hand out is also useful for providing independent homework for students. Reviewing Booklets-systems of equations Students answer lots of questions on systems of equations including algebraic and graphical methods of solving through booklets on systems of equations. Math Team offers test prep/review material for this topic. Finding the gradient (slope) Students find the gradient of a line between two points. Math Team offers hand out for this lesson. It offers a sheet with starter main and extension. Starter main shows how to find the gradient of a line by connecting two co ordinates. Students could find the slope of a line from its graph also. Using math functions to solve real world problems Students represent functions in different forms like equations, tables and graphs. As a starter, the concept of function machines could be introduced to students. Teachers could access online function machine puzzles to help students understand the lesson. Measuring a thermometer, circumference of a circle are some other activities to use function rules in real world context. ckeesler provides activity for this concept. Statistics and elephants Students present many     data about elephants in different formats . TES Connect offers a teaching resource for this topic. It is a representing data worksheet where students are requested to represent their data about elephants in various formats like pie chart, histogram and bar chart. Scatter graphs with Aliens Students compare variables with scatter graphs through an activity. Math Team provides activity for this topic. It introduces line of best fit and co relation trhough an activity where some aliens have landed on the earth and they would be taken to the top most secret lab for finding out the details for knowing the line of best fit and co relation. Introduction to Functions in math Students define Function and identify examples and non examples of Function with the given input-output tables. Day today events like toasting bread comes good for input output concept.21ST Century Lessons: A Boston Teachers Union Initiative provides resource for this topic. Functions as Tables Students define one-one functions and many to one function. Magic function machines could be a starter for this lesson. Students observe how they get  answers using a function rule.21ST Century Lessons: A Boston Teachers Union Initiative resource for this lesson. Fractions Review Students recapture a number of key concepts in fractions. Fraction games online help students recapitulate the concepts with fun. These games are many in number and teachers could select those which suit their purposes. Math Team provides a hand out for this review. Introduction to Integers in math Students are introduced to integers and integer operations. Cool weather temperatures are examples of negative numbers and hot weather temperatures indicate positive numbers. Such real life examples could introduce integers in a very natural way to students.21ST Century Lessons: A Boston Teachers Union Initiative provides resource for this lesson. Introduction to math Absolute Value Students are introduced to the concept and usage of Absolute Value. Students use absolute values for determining the magnitudes of quantities. Real world scenarios like distance from a residence could showcase where absolute value and magnitudes would be necessary to make comparisons. 21ST Century Lessons: A Boston Teachers Union Initiative provides lesson plan and other resources for this topic. Negative Numbers bingo Students are able to add and subtract negative numbers. Bingo cards for playing Bingo games are     useful as a starter activity to check students’ previous knowledge or a plenary to check students’ understanding of the concept. Math Team provides the activity for this concept. Logic puzzles Children use their problem solving skills for solving logic puzzles. Apples and friends, Bags of Marbles, Black and white hats are some of the interesting logic puzzles for improving students’ logical abilities. Math Team provides resource for this idea with its Mine Sweeper puzzle. Factors: multiples and primes Students identify factors, multiples and primes. Differentiated sheets and Venn diagrams could be useful for teaching this lesson. They write a number as its product of prime factors. Math Team offers resource for this topic. Prime Factorization Students learn to write the prime factorization of a number. Teachers could use prime number tiles to teach this concept. Completing factor trees (a virtual manipulative) also helps students do prime factorization with good understanding. YourMathGal provides video for this topic. Factorization and Greatest Common Factor in math Students learn to create factor trees and find GCF of two numbers by circling common factors between numbers. Math Team provides hand out for this. ‘Arrays and factors’, ‘Factor game’ like online games come on hand for this also. In Arrays and factors, students draw rectangles to display factorization of a given number. In Factor game, they practice divisibility among 1 -100 numbers. Graphing Polygons and Finding Side Lengths Students review the definitions and characteristics of polygons and other important vocabulary related to polygons and coordinate planes. 21ST century Lessons: A Boston Teachers Union Initiative offers resource for this concept. Teachers also could use Co ordinate grids on graph papers to help students     find the side length of a polygon. Students draw rectangles with vertices at the co ordinate planes (as instructed by the teacher) and find the lengths of the sides. Surface Area and volume of prisms Students are introduced to the meaning of surface area and volume of triangular and rectangular prisms. Activity sheets demanding explanations for problems would make the class lively and interesting. Math Team offers resource for Surface Area and volume of prisms. Box and whisker diagrams /Box plots Students know what Box and Whisker diagrams are, how to draw them and interpret them. Math Team provides material for this topic. It is a video where students are able to see what box and whisker diagrams are and how to draw and interpret them. Displaying Numerical Data Using Box Plots in math Students engage in a review about how to find the median, range and IQR. Then they are introduced to the five number summary of a data set and use that information to create a box plot.21STCentury Lessons: A Boston Teachers Union Initiative offers resource for this topic. Number review-Chocolate mystery Students use a variety of Math skills to solve a mystery. They cover concepts like cubed roots,exponents, factors and square roots. Math Team provides resource for this activity. Resources for solving Basic math Equations It is a useful resource for students who struggle for solving basic equations. It helps students consolidate their knowledge of equations. Math Team offers resource for solving Basic equations. Expanding double bracket quadratics Students learn to expand double brackets using the grid method. Math Team provides lesson plan for this topic. 7 Percentage starters Students undergo a multiple choice percentage quizzes on multipliers, percentage increase and decrease, reverse percentages. Math Team provides activity for this topic. Problem Solving Strategies for math Students learn to solve problems through a power point document .It presents universally accepted problem solving strategies. Students understand strategies for how to make a table, write a number sentence etc. Math Team provides a tutorial for this. Math fractions: decimals and percentages (FDP) Students understand how fractions, decimals and percentages are linked. Math Team provides learning tools for this topic through power point images to help teachers explain the concept. Ratios, rates and proportions in math Students understand that a ratio expresses the comparison between two quantities. Practical activities like exploring ratio with bike gears or delicious recipes would delight students with a motivation for learning the concept. MyFavoriteResources offers material for teaching ratios, rates and proportions. Introduction to Rate and unit Rate in math The lesson reviews ratio and then connects it to rate and unit rate. It is a video on a skateboarding bulldog. Dog’s rate of speed is calculated as a rate and then unit rate. Other examples are also there in the lesson and students could work with partners to complete the examples.21ST Century Lessons: A Boston Teachers Union Initiative provides resource for this lesson. In conclusion It is necessary that teachers for Math use lesson plans, activities, presentations, games, quizzes, tutorials and videos to introduce topics in an effective manner. Right from kindergarten to high school, teaching Math needs lots of teaching tools to explain the concepts with ease and effect. Hope the above mentioned resources and ideas would be fruitful for a Math teacher in his or her classroom activities.

How Children Succeed Part Two

How Children Succeed Part Two Improving Academic Performance In part one of this three-part introduction to How Children Succeed: Grit, Curiosity, and the Hidden Power of Character we are introduced the main theme of the book, that grit and character, not intelligence, is what drives academic performance and helps children succeed. We left off with the introduction of the cognitive hypothesis. The cognitive hypotheses states that success today depends primarily on cognitive skills (e.g., reading, writing, recognizing patterns, calculating, etc.) the type of intelligence that gets tested on IQ or standardized tests, and that the best way to build these skills is to practice them as early and often as possible. The cognitive hypothesis, according to Tough, is actually somewhat recent, and resulted from a series of studies in the early 1990s, that traced the decline in academic performance of U.S. children on a lack of early exposure to words and numbers. According to the generally accepted principles of the cognitive hypothesis, the more you can stimulate a young child’s brain early on, the stronger their academic skills will be later on in life, and the more successful they will thus become in school. For example, research shows that children born into poverty hear hundreds of thousands of fewer words by age 3 than children born into middle or upper middleclass families. If you follow the cognitive hypothesis, then this can clearly explain socioeconomically disadvantaged students’ lagging performance on tests of reading, writing, and general comprehension years later. The solution is to encourage the parents of these children to talk to, read to, and introduce counting games to their children as early and as often as possible. Interestingly, in the next chapter of the book, Tough spends a significant amount of time exploring a somewhat alternative view of how and why poverty impacts academic performance. It’s not that children born into poverty don’t hear enough words (though perhaps that’s part of it), it’s that they are systematically under significantly more stress from a very young age, and this stress impacts their ability to focus, pay attention, and stay on task. Ultimately, Tough suggests that the cognitive hypothesis, while certainly true in some areas and on some levels, is attractive because it’s so easy to understand. It’s highly linear. Less early exposure to words and numbers equals worse academic outcomes. But, while researchers certainly value simple theories of how the world works, Tough notes that a growing number of academic researchers, from fields as widespread as education, economics, psychology, and neuroscience have been coming togetherand sharing evidence to question the underlying assumptions embedded in the cognitive hypothesis. It is at this point that Tough directly describes the main theme of this book, which is that success doesn’t depend on how much stuff we can fit in our child’s brains early in life (i.e., the cognitive hypothesis). Instead, it depends on the ability to cultivate a set of qualities related to what you might call character or personality attributes, such as: persistence, self-control, curiosity, conscientiousness, grit, and self-confidence. He concedes that for some skills and in some ways, what he calls the stark calculus of the cognitive hypothesis is entirely accurate. The more a 4th grader reads, the better he will become at reading and comprehending, for example. But, his main contention is that academic and general success in life is complex to understand, and character skills (perhaps because when strong, they allow you to be better at buildingcognitive skills) are at the core of what truly allows children to succeed. In part three of our introduction, we’ll explore character in more detail, as well as offer an initial analysis and review of the book.

How to Use Divergent Thinking to Succeed at School

How to Use Divergent Thinking to Succeed at School As a University writing tutor, the most common thing I hear from my students is, “I’m just not good at this.” At some point in the writing process they ask me to accept their apparently fatal (academic) flaws and move on. They try to tell me, as they were once told, that they simply aren’t smart enough to complete their essay. My students’ doubts reflect a history of education that buys into the myth of innate academic ability as the sole predictor of success at school. It’s an idea that has been criticized over and over againâ€"perhaps most famously by education adviser Sir Ken Robinson in the most viewed TED Talk of all timeâ€"but that still rings true for many students. Part of the problem is that students are often told that there is only one right answer, only one right way to get to that answer, and if you’re doing it wrong then it’s game over. In tandem with exam anxiety, this pressure paralyzes students to the point where they’re afraid to suggest any answer for fear of looking stupid. One solution is to do away with the pressure of the perfect, singular answer with divergent thinking. In the words of Ken Robinson, “Divergent thinking is an essential capacity for creativity.” When using divergent thinking methods, the number of interpretations of and solutions for any given problem are endless. Instead of stressing about writing the perfect thesis  or solving the equation in one try, divergent thinking encourages students to explore and record as many options as possible without judgement. Only once every possibility has been delved into is it time to start asking questions and using reason to narrow your focus to the best choices. While this sounds like a simple concept, divergent thinking goes beyond coddling students who don’t like being wrong. Statistically, students who are encouraged to use divergent thinking methods demonstrate greater confidence, improved mood, stronger academic ability, and a penchant for entrepreneurship. According to intelligence scholar  James Flynn, the effect of divergent thinking also reads  on a standardized scale. Since 1930, average IQ scores across the globe have consistently increased. One explanation links this improvement to upgrades in human “mental artillery:” the ability to classify, to use logic on abstractions, and to take the hypothetical seriously. In other words, the ability to produce and analyze hypotheticals, to use divergent thinking, has helped  people become better thinkers. So, how do we teach divergent thinking? Encourage Questions. Instead of evaluating ideas as good or bad, distill the strongest solutions by asking questions about their effectiveness, their relevance to the problem, and their shortcomings. Reframe Failure. Treat failure as the middle of a healthy process, rather than the catastrophic end. As Robinson said, “If you’re not prepared to be wrong, you’ll never come up with anything original.” Collaborate. Allow students to build off each other, combine their ideas, and foster a creative community. Think Strange. This exercise is popular amongst interviewers. Take an everyday object like a stapler or a paperclip, and ask students to think of as many unconventional uses for that object as possible. Go for quantity: nothing is too strange! Start at the End. Instead of asking students to brainstorm solutions, ask them to formulate a problem. This can be framed however you’d likeâ€"by location, demographic, subject, etc.â€"but work towards problems that are clear, concise and purposeful. Good luck! To learn more about the benefits of divergent thinking, start here: Edutopia’s “Fuel Creativity in the Classroom With Divergent Thinking” InformED’s “30 Ways to Inspire Divergent Thinking” Ken Robinson’s TED Talk, “Changing Education Paradigms” The Creative Education Foundation’s “Divergent Thinking”